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Abstract 
 
The wake potential associated with the passage of swift protons through a solid 

material using cylindrical coordinates is studied. Full results of the wake potential as a 
function of space when a proton moves parallel with and perpendicular to the surface are 
presented. Three different points are approach: (i) Dielectric analysis based on the damping, 
velocity and kind of material (ii) The influence of a damping on the wake potential and 
induced forces (stopping and lateral) (iii) The coordinates of the internal. 
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1. Introduction 
 
N. Bohr (1948) [1] treatise the penetration of atomic particles through matter, shown 

in Fig. (1), a positive charged particle (Z1e) penetrates a material. Let’s look at the electric 
field slowing down the projectile, such a field is the result of the polarizability of the 
material. The electrons of the atoms are slightly displaced into the 'wake' of the projectiles. 
This effect is strongest behind the projectile than in front of it, and consequently the 
projectile feels a retarding force (Z1eEind), where Eind  is the induced electric field. The 
retarding force is induced since the field is due to the presence of the projectile [2].   
 
 
 
 
 
 
 
 
 
 
 

Fig. 1: The penetration of atomic particles through matter [1]. 
 
When the ion velocity is greater than the average velocity of valence electrons in 

solids, a good description of the loss process can be achieved using linear response theory, 

                                                 
*) For correspondence; Email: mkawo4@yahoo.com.  

mailto:mkawo4@yahoo.com�


Int. J. Nanoelectronics and Materials 4 (2011) 7-25 

  
 

8 
 

together with atomic-type calculations to evaluate the effect of losses due to core-electron 
excitations. 

In condensed matter with many mobile electrons the charge of the ion becomes 
screening by the motion of the valence electron gas. The first nonlinear calculation in the 
static limit was performed by Echnique et al. [3] using the density functional formalism to 
calculate the response of the electron gas to the perturbation produced for a moving proton. 
These calculations have been extended to higher charges and were able to produce in a very 
natural way the oscillations of the stopping power, or equivalently the effective charge, as a 
function of the ion nuclear charge Z1.  

In this work a basic quantities that characterize the stopping of a charge interacting 
with a polarizable medium using semi classical arguments are introduced. The standard 
random phase approximation (RPA) representation for the dielectric function is used and 
several limiting analytical approximations are summarized [3]. 
 
 

2. Theory 
2.1 Wake Potential 

 
The wake potential (i.e. the scalar electric potential )(rw


Φ ) in a homogenous 

isotropic medium with dielectric properties ( )ωκε ,  due to swift proton having a velocity υ  
is given by [4]:  
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Where 0j  is the Bessel function of zero order. 
The cylindrical coordinates ρ  and  z  refers to the direction of motion, 22 yx +=ρ .  

 The wave number 2

2
22

υ
ωκ += q  has a component in −q and in the ρ -direction, 

where 2222 /υωκ −=q , thus, 
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and Eq. (1) becomes,  
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Because ( ) ]1
,

1[ −
ωκε

  is a complex function therefore Eq.(1) becomes,                                                                                    
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It’s clear that Esq. (4) is strongly dependents on the dielectric analysis of the material 

and the internal coordinates z and ρ. 
 
 

2.2 Stopping and Lateral Forces 
 
The stopping power may be understood as a time-average force on the projectile, 

directed opposite to the velocity and originating in the response of the stopping medium to 
the electric field set up by the projectile. The response of the medium also includes a force 
component perpendicular to the direction of motion which contributes to lateral scattering of 
the projectile. For penetration in the bulk there is no net deflection because of symmetry. 
Therefore the lateral force only contributes fluctuating angular deflections (multiple 
scattering) [5]. 

The stopping force reflects the response of target electrons to the electric field 
induced by the projectile. The same is true for the lateral force which is known to be related 
to the electrostatic image force, and its significance in grazing-incidence studies with ion 
beams has been pointed out [6].  

The induced electric field (i.e. the induced force) is given by the following Esq.: 
   

 ( ) ( )
r

rrF w
ind ∂

∂
−=

φ                                                                                                            (5) 

                    
Which may break down into its parallel and perpendicular components (i.e. z and ρ-

components) with respect to the direction of motion of the proton, this field takes the 
following form: 
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The stopping power (or average energy loss per unit path  length dxdEsp /=  is 

determined by the retarding force acting on the moving proton, which in this formulation is 
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directly given by the value of induced electric field at the instantaneous position of the 
proton namely, 

                                          ( )0,0zp Fs −=  
 
In other word, 
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(ii) Lateral Force, ( ) ,,
ρ
φρρ ∂
∂

−= wzF  

 

( ) ( )222
1

0
0

2
1 /2, υωκρω

κ
κ

πυ
ρ κυ

ρ −∫ ∫−=
∞

JddZzF
 

        X 
( ) ( ) 
















−






−








−






 1

,
1Imsin1

,
1Recos

ωκευ
ω

ωκευ
ω zz                                           (8) 

 
 
Where ( )xj1  is the Bessel function of the first order.  ( ) 00,0 =ρF , because ( ) .001 =j   
 
 
 3. Dielectric Constant with No Damping ,   0→γ   
 3.1 Low ion velocity Fυυ ≤  ( Fυ  is Fermi velocity) in an electron gas: 
 

The well-known Lindhard function [1954] [7] given in a self-consistent way an exact 
description of the dielectric function for a non-relativistic free electron gas of high density at 
zero temperature. In the low frequency limit, within this Random Phase Approximation 
(RPA) for the dielectric function, the loss function can be written as: 
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where  1ε  and 2ε  are the real and imaginary parts of  the dielectric function. 
 
( ) ( ) ( ) 1, 11 += κκωκε fC                                                                                                      (10a)  
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Then, 
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Different approximations to the function ( )κ1f  lead to different expression for the 

wake potential and stopping and lateral forces [8].  
 
If we take two approximations to ( )κ1f  as follows: 

 (i) ( ) 11 =κf , as a first approximation, then one can get the wake potential as follows: 
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where 
π
κ

κ F
TF

4
=  is Thomas Fermi wave number. 

 
 
Therefore, the wake potential in Eq. (4) becomes, 
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The stopping force, 
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and the lateral force ( )ρρ ,zF  in Eq. (8) becomes, 
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At zero coordinates 0=ρ  and 0=z , 
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And the stopping and lateral forces in Eqs. (15, 16) become, 
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From Brandt-Kitagawa (1982) [BK] we have, ( ) sF r/4/9 3/1πκ =  and ( ) 3/19/4 πα = , 

with sr  is the radius of electron density. 
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where ( ) ( )
Z
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which agree with Echnique (1980) [10]. 

 
The lateral force ( ) 00,0 =ρF , because the modified Bessel function of first order

( ) 001 =J .  
 
(ii) The 2nd. Approximation to the function ( )κ1f  is obtained by using the full (RPA) 

dielectric response function, which has been proposed by Lindhard Winter (1964) [11]. 
Expanding the function ( )κ1f  up to the second order in k. one obtains: 
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Using Esq. (12a, 12b) together with Esq. (24) one can get the following two Esq.: 
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The wake potential in Eq. (5) becomes: 
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And the stopping and lateral forces in Esq. (7, 8) become:  
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Again at zero coordinates i.e. 0=ρ  and 0=z , the wake potential and stopping and lateral 
forces in Eqs. (29, 30 and 31) become: 
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Where Fπκχ /12 =  
 
and the lateral force ( ) 00,0 =ρF  because ( ) .001 =J   
 
 3.2 High ion velocity Fυυ ≥  ( Fυ  is Fermi velocity) in an electron gas: 
 

At high velocities, where the projectile can excite plasmons in the medium, using the 
(RPA) of the dielectric function which is given in the following Esq., [5]   
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By substituting Esq. (35, 36) into Esq. (5), one can get the wake potential at high 

velocity: 
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The stopping force ( )ρ,zFz  is: 
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And the laterals force ( )ρρ ,zF : becomes, 
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where +κ  and  −κ  are the upper and lower integration limits in k are maximum and 
minimum transfers +κ  and  −κ  to target electrons [12,13] . 
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At zero coordinates 0→z  and 0→ρ , the wake potential in Eq.(37) becomes: 
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the stopping force ( )0,0zF : 
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and the lateral force at zero coordinates ( ) 00,0 =ρF  because the Bessel function at first 
degree ( ) 00,01 =J . 
 
 
 4. Dielectric constant under damping 0>γ : 
 

Estimates of the energy loss of slow protons interacting with solids may be made 
using a free electron-gas model to describe the electronic response of the solid [14]. Earlier 
calculations for electrons interacting with an electron gas [15] showed that significant 
changes occur in the mean free paths and energy losses of low-energy electrons when one 
includes damping in the electron gas to account, in a phenomenological fashion, for the 
decay of elementary excitations as must occur in real solids. The increase in energy loss rate 
(or decrease in mean free path) is due to the possibility of plasmon excitation for electron 
energies below the threshold predicted in the absence of damping. A similar situation should 
obtain for heavy charged particles and could have important implications for estimates of 
the energy deposited in.  
 
 4.1 Slow ions Fυυ < : 
 

For an electron gas described by a complex dielectric function ( )ωκ ,∈ , the energy 
loss per unit path length for a carbon of velocity υ1 in the electron gas (or the stopping 
power of the electron gas) is given by the Eq. (15), and a dielectric function approximation 
for the case of slow ions has been suggested by Ferrell et al [16]. They employ an 
approximate form for ( )ωκ ,∈ , the dielectric function of the metal, which is appropriate 
when energy transfer, ω, is small compared with the Fermi energy of the metal.  
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Eq. (43) is a simple generalization of the longitudinal dielectric function of an 

electron gas as derived from the hydro dynamical model [16], in which the prorogation 
velocity 3/Fs υ=  . The term proportional to ω multiplying s2 k2 in the denominator 
describes damping due to electron-hole excitation. It is chosen so that when equation (16) is 
expanded in a power series in ω it agrees with the small–ω expansion of ω,k∈  ,the Lindhard 

dielectric function [11], to first order. The presence of the factor )kk2( F −θ accounts for 

the fact that 
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 vanishes when k>2kF, since particle–hole excitations of small energy 

cannot correspond to a momentum transfer much greater than 2kF. The term containing γ as 
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a factor describes “frictional” damping of collective states and may be taken from 
experiments for a given metal. 

By substituting the imaginary part,  
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1Im into Esq.(15) one can get   :  
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 4.2 Swift ions Fυυ >  : 
 
 The interaction of fast ions with an electron gas is a problem of continuing interest. 
specifically, a great deal of theoretical and experimental work has been concerned with the 
distribution in space and time of perturbation of electron motion in solids caused by the 
passage of swift heavy charged particles. The explicit expression for the stopping power of a 
single charged particle was given by Eq.(15), [12,13]. 
 

By substituting the imaginary part of  
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dielectric response ∈(k,ω) in the limit of damping process in Eq.(15), the stopping power 
can be obtained.  

 
 

 
4.3 Random phase approximation (RPA) dielectric response function  

  
One can represent the dielectric response function of the medium by RPA, Eq(34), 
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Eq. 46 gives the stopping power at high velocity and under damping effect ( )0>γ , and must 
be solved numerically. A program WakePot.f90 has been written in FORTRAN-90 with aid 
of software 'Compaq Visual Fortran 6.6' for compiling, linking and executing the program. 
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5. Results and conclusions 
5.1 Wake potential  

 
The wake potential considered in the present work for the materials indicated before. 

The calculation of wake potential is according to Eq. (5) using RPA dielectric function 
taking in the consideration the special cases of velocity and influences of damping. Figs. 
1(a-b) show the values of the wake potential calculated along the projectile trail (i.e at 

)0=ρ and at ( )1,5.0=ρ , for a proton moving with velocities ua.12,1,4.0=υ in gold, Au and 
aluminum, Al. The general shape of the wake potential derived from Eq.(5) shows a damped 
oscillatory behavior in the longitudinal direction behind the projectile; the pattern of these 
oscillations decreases exponentially in the transversal direction. Also, this wake potential 
extends slightly ahead of the projectile.  The surface-wake potential in the points of 
trajectory, when the proton is moving to the right near an (gold or aluminum) surface, for 
different impact parameter and low velocities. A velocity behavior similar to that observed 
in the bulk wake is seen through the series of plot: for 0=υ  the potential has a dip at the 
position of the particle; when the ion moves slowly ( )Fυυ ≤  the dip is shifted to the left; at 
large ( )Fυυ ≥  some oscillation appear behind the particle, whose wavelengths increase with 
the velocity according to sωπυ /2  in the solid side and  sωπυ /2  in the vacuum [4].  

Figs. 2(a-b) show the three-dimensions surface wake potential calculated in the plane 
containing both the surface normal and the particle trajectory for velocities ( )ua.12,1,4.0=υ  
and different positions of the ion. A trough (hill) is observed at the variation of induced 
potential with axis ρ  and z . When the particle follows an inner trajectory, but stays close 
enough to the surface ( )sz ωπυ 2/< , both oscillations of frequency sω  and pω  coexist, as 
the ion travels deeper inside the solid, the latter becomes dominant (Fig.(2(a-b)).  

Fig. 3(a-b) show the stopping force Fs in (eV/A) units as a function of z and at three 
different values of ρ (0, 0.5 and 1) and velocities υ  (0.4, 1 and 12 a.u). The point ( ρ =0, 
z=0) is the starting point of interacting protons with the target, in other word it is a projectile 
trail where the effective of the force is high, but when ρ  increases the  effective decrease, 
because the projectile far from the reference point ( ρ =0, z=0).  

Fig 4 (a-b) shows the three dimensions surface stopping force in the plane containing 
both the surface normal and the particle trajectory for velocities ( )ua.12,1,4.0=υ  at different 
positions of the ion.  

The lateral force ( )zFL ,ρ  at ρ =0 because the Bessel function of the first order 
( ) 0,1 →zj ρ  when 0→ρ  as shown in Figs. 5(a-c). This means that there is no lateral force 

for the incident protons at parallel coordinates. 
Finally Fig 5 (a-b) shows the three-dimension surface lateral force ( )zFL ,ρ  in the 

plane at different positions of the ion ρ  and z , and at different velocities ( )ua.12,1,4.0=υ . 
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Fig. 2:  The variation of stopping force with z (a.u), and ( )ua.ρ  at damping u=0.1 and velocities 

( )ua.12,1,4.0  of proton in (a) Al and (b) Au. 
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(a)                                                                    (b) 

 
 
Fig. 3:  The surface wake potential at damping u=0.1, velocities ( )ua.12,1,4.0=υ  with z (a.u) and ( )ua.ρ  

of proton in (a) Al and (b) Au. 
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Fig. 4:  The variation of stopping force with z (a.u), and ( )ua.ρ  at damping u=0.1 and velocities 
(0.4, 1, 2𝑎.𝑢) of proton in (a) Al and (b) Au. 
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(a)                                                                    (b) 
 

Fig. 5:  The surface stopping force at damping u=0.1, velocities 𝜐 = (0.4, 1, 2𝑎.𝑢) with z (a.u) and ( )ua.ρ  of 
proton in (a) Al and (b) Au. 
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Fig. 6:  The variation of lateral force with z (a.u), and ( )ua.ρ  at damping u=0.1 and velocities 
(0.4, 1, 2𝑎.𝑢) f proton in (a) Al and (b) Au. 
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(a)                                                              (b) 
 
 
Fig. 7:  The surface lateral force at damping u=0.1, velocities 𝜐 = (0.4, 1, 2𝑎.𝑢) with z (a.u) and ( )ua.ρ  of 
proton in (a) Al  and (b)Au. 
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